Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mar Drugs ; 20(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1964023

ABSTRACT

Coronavirus disease 2019, caused by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global pandemic that poses an unprecedented threat to the global economy and human health. Several potent inhibitors targeting SARS-CoV-2 have been published; however, most of them have failed in clinical trials. This study aimed to assess the therapeutic compounds among aldehyde derivatives from seaweeds as potential SARS-CoV-2 inhibitors using a computer simulation protocol. The absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of the compounds were analyzed using a machine learning algorithm, and the docking simulation of these compounds to the 3C-like protease (Protein Data Bank (PDB) ID: 6LU7) was analyzed using a molecular docking protocol based on the CHARMm algorithm. These compounds exhibited good drug-like properties following the Lipinski and Veber rules. Among the marine aldehyde derivatives, 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, and 5-bromoprotocatechualdehyde were predicted to have good absorption and solubility levels and non-hepatotoxicity in the ADME/Tox prediction. 3-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were predicted to be non-toxic in TOPKAT prediction. In addition, 3,4-dihydroxybenzaldehyde was predicted to exhibit interactions with the 3C-like protease, with binding energies of -71.9725 kcal/mol. The computational analyses indicated that 3,4-dihydroxybenzaldehyde could be regarded as potential a SARS-CoV-2 inhibitor.


Subject(s)
COVID-19 Drug Treatment , Seaweed , Aldehydes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Computer Simulation , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Seaweed/metabolism , Viral Nonstructural Proteins/chemistry
2.
Eur J Med Chem ; 240: 114570, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-1906974

ABSTRACT

As an essential enzyme of SARS-CoV-2, the COVID-19 pathogen, main protease (MPro) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 positions and the N-terminal protection group, we synthesized 18 tripeptidyl MPro inhibitors that contained also an aldehyde warhead and ß-(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 position. Systematic characterizations of these inhibitors were conducted, including their in vitro enzymatic inhibition potency, X-ray crystal structures of their complexes with MPro, their inhibition of MPro transiently expressed in 293T cells, and cellular toxicity and SARS-CoV-2 antiviral potency of selected inhibitors. These inhibitors have a large variation of determined in vitro enzymatic inhibition IC50 values that range from 4.8 to 650 nM. The determined in vitro enzymatic inhibition IC50 values reveal that relatively small side chains at both P2 and P3 positions are favorable for achieving high in vitro MPro inhibition potency, the P3 position is tolerable toward unnatural amino acids with two alkyl substituents on the α-carbon, and the inhibition potency is sensitive toward the N-terminal protection group. X-ray crystal structures of MPro bound with 16 inhibitors were determined. In all structures, the MPro active site cysteine interacts covalently with the aldehyde warhead of the bound inhibitor to form a hemithioacetal that takes an S configuration. For all inhibitors, election density around the N-terminal protection group is weak indicating possible flexible binding of this group to MPro. In MPro, large structural variations were observed on residues N142 and Q189. Unlike their high in vitro enzymatic inhibition potency, most inhibitors showed low potency to inhibit MPro that was transiently expressed in 293T cells. Inhibitors that showed high potency to inhibit MPro transiently expressed in 293T cells all contain O-tert-butyl-threonine at the P3 position. These inhibitors also exhibited relatively low cytotoxicity and high antiviral potency. Overall, our current and previous studies indicate that O-tert-butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for tripeptidyl aldehyde inhibitors of MPro.


Subject(s)
COVID-19 , SARS-CoV-2 , Aldehydes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Humans , Protease Inhibitors/chemistry , Threonine
3.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1319012

ABSTRACT

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Subject(s)
Aldehydes/chemistry , COVID-19 Drug Treatment , Chagas Disease/drug therapy , Cysteine Proteinase Inhibitors/therapeutic use , SARS-CoV-2/enzymology , Trypanosoma cruzi/enzymology , Aldehydes/metabolism , Aldehydes/pharmacology , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/chemistry , Drug Design , Humans , Kinetics , Models, Molecular , Molecular Structure , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , SARS-CoV-2/drug effects , Structure-Activity Relationship , Trypanosoma cruzi/drug effects
4.
J Med Chem ; 65(4): 2794-2808, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1192017

ABSTRACT

A novel series of peptidomimetic aldehydes was designed and synthesized to target 3C protease (3Cpro) of enterovirus 71 (EV71). Most of the compounds exhibited high antiviral activity, and among them, compound 18p demonstrated potent enzyme inhibitory activity and broad-spectrum antiviral activity on a panel of enteroviruses and rhinoviruses. The crystal structure of EV71 3Cpro in complex with 18p determined at a resolution of 1.2 Å revealed that 18p covalently linked to the catalytic Cys147 with an aldehyde group. In addition, these compounds also exhibited good inhibitory activity against the 3CLpro and the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially compound 18p (IC50 = 0.034 µM, EC50 = 0.29 µM). According to our previous work, these compounds have no reasons for concern regarding acute toxicity. Compared with AG7088, compound 18p also exhibited good pharmacokinetic properties and more potent anticoronavirus activity, making it an excellent lead for further development.


Subject(s)
Aldehydes/pharmacology , Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Enterovirus/drug effects , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Aldehydes/chemical synthesis , Aldehydes/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Male , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL